Amine Transaminases in Multi-Step One-Pot Reactions
نویسنده
چکیده
Amine transaminases are enzymes that catalyze the mild and selective formation of primary amines, which are useful building blocks for biologically active compounds and natural products. In order to make the production of these kinds of compounds more efficient from both a practical and an environmental point of view, amine transaminases were incorporated into multi-step one-pot reactions. With this kind of methodology there is no need for isolation of intermediates, and thus unnecessary work-up steps can be omitted and formation of waste is prevented. Amine transaminases were successfully combined with other enzymes for multi-step synthesis of valuable products: With ketoreductases all four diastereomers of a 1,3-amino alcohol could be obtained, and the use of a lipase allowed for the synthesis of natural products in the form of capsaicinoids. Amine transaminases were also successfully combined with metal catalysts based on palladium or copper. This methodology allowed for the amination of alcohols and the synthesis of chiral amines such as the pharmaceutical compound Rivastigmine. These examples show that the use of amine transaminases in multi-step one-pot reactions is possible, and hopefully this concept can be further developed and applied to make industrial processes more sustainable and efficient in the future.
منابع مشابه
One-Pot Multi-Component Synthesis of Dihydropyrimidinones via Biginelli Condensation
Three-component reactions have emerged as useful methods because the combinationof three components to generate new products in a single step is extremely economical,among the multi-component reactions. A green, simple, efficient, and cost-effective procedure has been carried out by the synthesis of dihydropyrimidinonesin Biginelli’s condensation of ethyl cyanoacetate, aldehyde and urea or thio...
متن کاملOne Pot Chemically Attachment of Amino Groups on Multi walled Carbon Nanotubes Surfaces
Functionalization of multiwalled carbon nanotubes (MWCNTs) with NH2 groups under a one pot reaction is studied. During the first step of the reaction, Cl and CHCl2 groups were attached to the surfaces of MWCNTs through an electrophilic addition reaction. In the second step of process, Cl atoms were replaced with NH2 and amino groups (ethylene diamine and but...
متن کاملOne-pot biocatalytic amine transaminase/acyl transferase cascade for aqueous formation of amides from aldehydes or ketones†‡
Biocatalytic acylation/amidation is well-known and has been applied for decades but it has often been limited to the use of organic solvents to avoid hydrolysis. The acyl transferase from Mycobacterium smegmatis (MsAcT) is an enzyme that can perform trans-acylations in aqueous solution. Only a few hydrolases can catalyze trans-acylation in water and MsAcT also has the ability to act as a perhyd...
متن کاملEngineered baker’s yeast as whole-cell biocatalyst for one-pot stereo-selective conversion of amines to alcohols
BACKGROUND One-pot multi-step biocatalysis is advantageous over step-by-step synthesis as it reduces the number of process operation units, leading to significant process intensification. Whole-cell biocatalysis with metabolically active cells is especially valuable since all enzymes can be co-expressed in the cell whose metabolism can be exploited for supply of co-substrates and co-factors. ...
متن کاملClick Assisted One-Pot Multi-Step Reactions in Polymer Science: Accelerated Synthetic Protocols
Presently, the majority of reports deal with combining chemical reactions, in a stepwise fashion, to obtain well-defined polymers. In the future, chemists need to address new challenges such as increase in the range of available efficient reactions, developing libraries of compatible one-pot reactions, and the application of obtained materials in key industries. Indeed, the rising importance of...
متن کامل